De ster Mirach in het sterrenbeeld Andromeda.
Foto: Kent Wood (APOD)

Het magnitudesysteem werd ten tijde van de Grieken uitgevonden en werd doorheen de loop van eeuwen steeds uitgebreider en verfijnd. Het is een quasi logaritmische schaal waarop elke ster aan de nachthemel een magnitude krijgt afhankelijk van hoe helder hij is. In tegenstelling tot wat men zou verwachten krijgen zwakkere sterren hogere magnituden dan heldere sterren.

Zeer heldere hemelobjecten zoals de zon, Venus, de ster Sirius in Canis Major (Grote Hond), ... worden een negatieve magnitude toegekend. Dit is het schijnbare magnitudesysteem. In het logaritmische magnitudensysteem komt een verschil van vijf magnituden neer op een factor van 100. Dit houdt in dat een verschil van 1 magnitude overeenkomt met de vijfdemachtswortel van het getal 100. Het schijnbare magnitudesysteem is echter misleidend: het geeft alleen aan hoe helder hemelobjecten zijn gezien vanaf de aarde. Daarom heeft men het absolute magnitudesysteem geïntroduceerd. De absolute magnitude van een ster is de helderheid van de ster gezien op 10 parsec verwijdert van de aarde.

Als je de schijnbare en absolute magnitude kent van een ster, kan je de afstand berekenen. Hiervoor geldt de volgende wiskundige gelijkheid:

M - m = 5 - 5 log(d)

Waarbij: M = de absolute magnitude, m = de schijnbare magnitude en d = de afstand tot die ster.

Wanneer we deze gelijkheid omvormen kunnen we de afstand berekenen. Stel dat we de afstand van de ster Deneb tot de aarde willen berekenen in parsec, want de afstand d in de formule is de afstand in parsec, geldt;

Gegeven:

  • M = -8,73
  • m = 1,25

M - m = 5 - 5 log(d)

-8,73 - 1,25 = 5 - 5 log(d)

(-8,73 - 1,25 - 5) / - 5 = log(d)

10(-8,73 - 1,25 - 5) / - 5 = d

d = 990,83 parsec

Om het resultaat nu in lichtjaar te weten doe je het resultaat maal de waarde van een parsec. Dus;

990,83 . 3,26 ≈ 3230 lichtjaar

Met deze vergelijking kan men ook de absolute helderheid van een ster berekenen als de afstand en schijnbare magnitude gekend zijn. Dus als je wilt weten wat de absolute magnitude van de schijnbaar heldere ster Sirius is geldt;

Gegeven:

  • d = 2,66 parsec
  • m = -1,46

M - m = 5 - 5 log(d)

M - (- 1,46) = 5 - 5 log(2,66)

M + 1,46 = 5 - 5 log(2,66)

M = 5 - 5 log(2,66) - 1,46

M ≈ 1,42

Dit wil zeggen dat Sirius zo helder is aan de hemel omdat hij zo dicht bij de aarde staat. Uiteraard kan je in dit soort dingen veel verder gaan. Als we bijvoorbeeld de schijnbare magnitude van de ster Deneb op de afstand van de ster Sirius willen bepalen;

Gegeven:

  • d(Sirius) = 2,66 parsec
  • M(Deneb) = -8,73

M - m = 5 - 5 log(d)

-8,73 - m = 5 - 5 log(2,66)

- m = 5 - 5 log(2,66) + 8,73

- m ≈ 11,606

m ≈ - 11,606

Moest de ster Deneb op de afstand van de ster Sirius staan, dan zou deze dus bijna even helder als de volle maan zijn!

Joeri De Ro

Joeri De Ro

Medewerker van Spacepage en Poollicht.be.Redacteur sterrenkunde, hemelverschijnselen en ruimteweer

Dit gebeurde vandaag in 1969

Het gebeurde toen

Een Amerikaanse Delta raket brengt vanop de Cape Canaveral lanceerbasis in Florida de eerste Britse militaire Skynet communicatiesatelliet in de ruimte. De satelliet bleef echter maar een jaar operationeel. Foto: NASA

Ontdek meer gebeurtenissen

Redacteurs gezocht

Ben je een amateur astronoom met een sterke pen? De Spacepage redactie is steeds op zoek naar enthousiaste mensen die artikelen of nieuws schrijven voor op de website. Geen verplichtingen, je schrijft wanneer jij daarvoor tijd vind. Lijkt het je iets? laat het ons dan snel weten!

Wordt medewerker

Steun Spacepage

Deze website wordt aan onze bezoekers blijvend gratis aangeboden maar om de hoge kosten om de site online te houden te drukken moeten we wel het nodige budget kunnen verzamelen. Ook jij kunt uw bijdrage leveren door ons te ondersteunen met uw donatie zodat we u blijvend kunnen voorzien van het laatste nieuws en artikelen boordevol informatie.

100%

Sociale netwerken